Multiscale Parameter Tuning of a Semantic Relatedness Algorithm

نویسندگان

  • José Paulo Leal
  • Teresa Costa
چکیده

The research presented in this paper builds on previous work that lead to the definition of a family of semantic relatedness algorithms that compute a proximity given as input a pair of concept labels. The algorithms depends on a semantic graph, provided as RDF data, and on a particular set of weights assigned to the properties of RDF statements (types of arcs in the RDF graph). The current research objective is to automatically tune the weights for a given graph in order to increase the proximity quality. The quality of a semantic relatedness method is usually measured against a benchmark data set. The results produced by the method are compared with those on the benchmark using the Spearman’s rank coefficient. This methodology works the other way round and uses this coefficient to tune the proximity weights. The tuning process is controlled by a genetic algorithm using the Spearman’s rank coefficient as the fitness function. The genetic algorithm has its own set of parameters which also need to be tuned. Bootstrapping is based on a statistical method for generating samples that is used in this methodology to enable a large number of repetitions of the genetic algorithm, exploring the results of alternative parameter settings. This approach raises several technical challenges due to its computational complexity. This paper provides details on the techniques used to speedup this process. The proposed approach was validated with the WordNet 2.0 and the WordSim-353 data set. Several ranges of parameters values were tested and the obtained results are better than the state of the art methods for computing semantic relatedness using the WordNet 2.0, with the advantage of not requiring any domain knowledge of the ontological graph. 1998 ACM Subject Classification E.1 Graphs and networks, G.2.2 Graph theory, Path and circuit problems, H.3.1 Content Analysis and Indexing, I.2.4 Knowledge Representation Formalisms and Methods, Semantic networks, I.2.8 Problem Solving, Control Methods, and Search, Graph and tree search strategies

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning a semantic relatedness algorithm using a multiscale approach

The research presented in this paper builds on previous work that lead to the definition of a family of semantic relatedness algorithms. These algorithms depend on a semantic graph and on a set of weights assigned to each type of arcs in the graph. The current objective of this research is to automatically tune the weights for a given graph in order to increase the proximity quality. The qualit...

متن کامل

Tuning Shape Parameter of Radial Basis Functions in Zooming Images using Genetic Algorithm

Image zooming is one of the current issues of image processing where maintaining the quality and structure of the zoomed image is important. To zoom an image, it is necessary that the extra pixels be placed in the data of the image. Adding the data to the image must be consistent with the texture in the image and not to create artificial blocks. In this study, the required pixels are estimated ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

CogALex-V Shared Task: Mach5 - A traditional DSM approach to semantic relatedness

This contribution provides a strong baseline result for the CogALex-V shared task using a traditional “count”-type DSM (placed in rank 2 out of 7 in subtask 1 and rank 3 out of 6 in subtask 2). Parameter tuning experiments reveal some surprising effects and suggest that the use of random word pairs as negative examples may be problematic, guiding the parameter optimization in an undesirable dir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014